Structural Parameters, Tight Bounds, and Approximation for (k, r)-Center
نویسندگان
چکیده
In (k, r)-Center we are given a (possibly edge-weighted) graph and are asked to select at most k vertices (centers), so that all other vertices are at distance at most r from a center. In this paper we provide a number of tight fine-grained bounds on the complexity of this problem with respect to various standard graph parameters. Specifically: • For any r ≥ 1, we show an algorithm that solves the problem in O∗((3r + 1)) time, where cw is the clique-width of the input graph, as well as a tight SETH lower bound matching this algorithm’s performance. As a corollary, for r = 1, this closes the gap that previously existed on the complexity of Dominating Set parameterized by cw. • We strengthen previously known FPT lower bounds, by showing that (k, r)-Center is W[1]-hard parameterized by the input graph’s vertex cover (if edge weights are allowed), or feedback vertex set, even if k is an additional parameter. Our reductions imply tight ETH-based lower bounds. Finally, we devise an algorithm parameterized by vertex cover for unweighted graphs. • We show that the complexity of the problem parameterized by tree-depth is 2 ) by showing an algorithm of this complexity and a tight ETH-based lower bound. We complement these mostly negative results by providing FPT approximation schemes parameterized by clique-width or treewidth which work efficiently independently of the values of k, r. In particular, we give algorithms which, for any > 0, run in time O∗((tw/ )), O∗((cw/ )) and return a (k, (1 + )r)-center, if a (k, r)-center exists, thus circumventing the problem’s W-hardness.
منابع مشابه
Tight lower bounds for the asymmetric k-center problem
In the k-center problem, the input is a bound k and n points with the distance between every two of them, such that the distances obey the triangle inequality. The goal is to choose a set of k points to serve as centers, so that the maximum distance from the centers C to any point is as small as possible. This fundamental facility location problem is NP-hard. The symmetric case is well-understo...
متن کاملTight Approximation Bounds for Vertex Cover on Dense k-Partite Hypergraphs
We establish almost tight upper and lower approximation bounds for the Vertex Cover problem on dense k-partite hypergraphs.
متن کاملMore inequalities for Laplacian indices by way of majorization
The n-tuple of Laplacian characteristic values of a graph is majorized by the conjugate sequence of its degrees. Using that result we find a collection of general inequalities for a number of Laplacian indices expressed in terms of the conjugate degrees, and then with a maximality argument, we find tight general bounds expressed in terms of the size of the vertex set n and the average degree dG...
متن کاملSharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs
In $1994,$ degree distance of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the multiplicative version of degree distance and multiplicative ver...
متن کاملLow-Light Trees, and Tight Lower Bounds for Euclidean Spanners
We show that for every n-point metric space M and positive integer k, there exists a spanning tree T with unweighted diameter O(k) and weight w(T ) = O(k · n) · w(MST (M)), and a spanning tree T ′ with weight w(T ′) = O(k) · w(MST (M)) and unweighted diameter O(k · n). These trees also achieve an optimal maximum degree. Furthermore, we demonstrate that these trees can be constructed efficiently...
متن کامل